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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL MEMORANDUM X-55

EXPERIMENTAL INVESTIGATION OF SEVERAL COPPER AND BERYLLIUM
HEMISPHERICAL MODELS IN AIR AT STAGNATION
TEMPERATURES OF 2,000° F TO 3,600° F*

By Otto F. Trout, Jr.
SUMMARY

As part of an investigation by the National Aeronsutics and Space
Administration to determine the resistance to heating of various mate-
rials when used as a heat sink for hypersonic airframes, hemispherical
nose-shape models of beryllium and copper have been tested in a Mach num-
ber 4 hot-air jet at stagnation temperatures of 2,000° F to 3,600° F and

Reynolds numbers of 1.88 x 100 to 2.93 X 106.  The experimental results

of heating on the nose of the beryllium models agreed reasonably well

with theoretical results, whereas heating on the nose of the copper models
was almost twice that predicted by theory. Heating of the cylindrical
wall behind the hemisphere agreed fairly well with that predicted by
theory at lower temperatures. Beryllium produced a thin protective oxide
when heated to its melting point with no tendency to ignite before melting.
Copper produced a somewhat heavier layer of oxide upcn heating, and ignited
when heated to near its melting point. These tests indicate that beryl-
lium is superior to copper as a heat-sink material because it absorbs more
heat per unit weight, has greater resistance to oxidation in heated air,
and does not ignite when heated in air up to its melting temperature.

INTRODUCTION

The reentry of ballistic missiles into the atmosphere produces
extremely high heating rates on the missile surface. One of the methods
suggested for alleviating the effects of these high heating rates is the
absorption of heat into a material having a high heat capacity. The use
of heat-sink materials offers the advantage of simplicity but adds the
Penalty of additional weight to the missile airframe; therefore, it is
necessary to choose a material which will absorb the greatest amount of

*Title, Unclassified.



heat per unit weight and retain sufficient strength to support the loads
imposed on it.

Some of the other material properties which must be considered are
the rate of oxidation and ignition of the material in high-temperature
air. (See ref. l.) Oxidation can add heat to the model and cause loss
of material. Ignition of many of the metals tekes place at temperatures
considerably below their melting points. When ignition takes place the
entire model may be destroyed or consumed at a rate several times that
produced by aerodynamic heating, because of the additional heat and the
mass loss due to rapid oxidation.

Beryllium and copper have been suggested because of their high heat-
capacity-to-weight ratio as compared with otker available metals. Copper
is readily available as a material of construction and is easily formed
by conventional methods, but has the disadvartage of high density and
low strength. Beryllium has a higher heat capacity per unit weight,
lower density, and higher strength per unit weight than copper; however,
beryllium is not readily available and is difficult to fabricate.

Beryllium and copper have been considered by a number of authors as
aircraft structural materials suitable for atsorption of heat as indi-
cated by references 2 and 3. Exploratory tests of copper and beryllium
in a high-temperature airstream are reported in references 4L, 5, and 6.

As a part of NASA research on materials to withstand aerodynamic
heating, models of commercially pure beryllium and copper have been
tested in the pilot model ceramic-heated air jet at the Langley Research
Center to observe the reaction of these materials in high-temperature
air and make some measurements of the aerodyramic heating associated
therewith. The results of the tests, a comperison with calculated heating
for the models, and a description of the testing apparatus are presented
in the present paper.

SYMBOLS

specific heat of air at constant pressure, Btu/l?/bF

b

Cy specific heat of wall, Btu/lﬁ/oF

D diameter, ft

h local aerodynamic heat-transfer coefficient,

Btu/(sec)(sq £t)(°F)



k thermal conductivity of air, Btu/(sec)(sq ft)(CF/ft)
M Mach number

Np,. Prandtl number, cpu/k

Npe Reynolds number

Py stagnation pressure, psia

ty wall thickness, ft

T absolute temperature, OR

Tow adiabatic-wall temperature, °R

Ty stagnation temperature, °F unless otherwise stated
Ty wall temperature, °R

\Y velocity, ft/sec

B velocity gradient along surface near stagnation point
v absclute viscosity of air, lb—sec/sq ft

Py mass density of wall, 1b/cu ft

T time, sec

APPARATUS

The present series of tests were conducted in the pilot model
ceramic-heated air jet at the langley Research Center, a photograph of
which is presented in figure 1. A diagram of the construction of this
facility is presented in figure 2. This unit consists of a ceramic-
pebble-bed heat exchanger contained in a pressure tank, attached to an
M = 4 supersonic nozzle with a 4.0-inch-diameter exit exhausting to the
atmosphere.

The pebble bed consists of 3/8-inch-diameter zirconia spheres ran-
domly packed into a bed 28 inches in diameter and approximately 14 feet
high, supported by a 6-foot-high bed of 3/8-inch-diameter alumina spheres.



The pebble bed is surrounded by various types of brick that are placed in
such a manner as to insulate the pebble bed, insulate the pressure tank,
and prevent bypass flow. The brickwork iz laid up with the joints of

the various layers staggered, with all the voids filled with cement, and
all the bricks tightly fitted together to prevent air from flowing through
the brickwork and thus bypassing the pebble bed.

In preparation for a test, the ceramic bed is heated by a propane-
air-oxygen burner (fig. 2) by pressure firing down through the pebble bed
and exhausting out of the bottom of the pressure vessel. Some of the
products of combustion are also allowed to pass through the nozzle to
heat the brickwork leading to the nozzle. When the ceramics are heated
to the desired temperature, the burner is closed off and air is brought
in through the bottom of the bed, heated vhile passing through the pebble
bed, and discharged through the nozzle exit.

Figure 3 presents a photograph of a rodel in the test section of the
ceramic-heated air jet. The model is mounted on a water-cooled, movable
arm which swings the model into the jet by remote control when the desired
flow is established in the nozzle. The model can be removed from the jet
at any time during the test at the control of the operator.

Thermocouple and pressure data from both the model mounted in the
jet and related jet equipment are recorded on an oscillograph. Reactions
of the model during tests are observed visually and recorded by high-
speed motion-picture cameras. Shadowgraph data are also recorded by a
motion-picture camera.

Figure 4 presents Jet properties for the M = 4 nozzle operating
at a stagnation pressure of 815 psia and at stagnation temperatures from
2,000° F to 4,000° F. Figure 4(a) presen:s the variation of Mach number
and velocity with stagnation temperature. The decrease in Mach number
with increasing temperature is due to the decrease in specific heat ratio.
Figure 4(b) presents free-stream pressure and temperature plotted against
stagnation temperature for the free Jjet. Figure k(c) presents the calcu-
lated values of Reynolds number per foot nlotted against stagnation
temperature.

Figure 4(d) presents heating rate on the stagnation point of a hemi-

spherical model for the present facility as calculated by methods pre-
sented in references T and 8:

hVD = 0.765NP1,O'“\/-';2 Npo K

where D 1is the model diameter, and the physical properties and flow
velocity of air are evaluated immediately behind the normal shock. The



jet properties presented in figure 4 were calculated from equations pre-
sented in reference T, with the average value of the specific heat ratio
for air being used when calculating the change in conditions accompanied
by change in free-stream pressure.

MODELS AND TESTS

The present series of tests consists of heating a series of three
copper and three beryllium models in the ceramic-heated air jet. Fig-
ure 5 presents a diagram showing pertinent details of each of the three
sizes of models tested. Two models of each size were constructed -
one of beryllium and the other of copper. The l-inch-diameter hemispher-
ical models consisted of a hemisphere supperted by a cylinder of the same
material. Wall thickness was held constant at 0.125 inch. Thermocouples
were installed by spot welding them in the models at the stagnation point,
at 40° from the stagnation point, and approximately 1/2 inch behind the
intersection of the hemisphere and cylinder as shown in figure 5. The
3/k-inch-diameter models were identical to the l-inch-diameter models
except for the diameter. The 3/8-inch-diameter hemispherical models
were constructed with a 0.094-inch-thick wall. The only thermocouple in
this model was placed at the stagnation point.

Each model was used for three successive tests. Before each test,
the models were polished to a clean, smooth finish. The first two tests
were made at stagnation temperatures of 2,OOOO F and 2,900° F for 3 sec-
onds each. The third test was made at a stagnation temperature of 5,6000 F
for 10 seconds or until the model ablated. Thermocouple outputs were
recorded as a function of time on an oscillograph. The reactions of the
models were recorded by high-speed motion-picture cameras and shadowgraphs.

RESULTS AND DISCUSSION

Visual Observations

Figure 6 presents photographs of the l-inch-diameter beryllium and
copper models at various times during the tests and figure 7 presents
shadcwgraphs of the free jet and the three model sizes during typical
tests.

Upon being heated, beryllium formed a thin, smooth protective oxide
which did not appear to increase in thickness with time or temperature.
Near the melting point, the soft beryllium was blown from the model, but
had no tendency to ignite. Visual observation of the models after the
tests showed that they did not spall or crack from thermal shock caused
by rapid heating.
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Copper, as compared with beryllium, formed a thicker oxide on the
surface. Near the melting point, the copp:r ignited and burned rapidly.
Because copper was relatively soft, foreiga particles from the jet caused
indentations in the surface. Copper also showed no tendency to spall or
crack from rapid heating.

Calculation of Heating on Models

Heating on the stagnation point and tae LoP point on the hemisphere
of the models was calculated by methods presented in reference 8, whereas
heating on the cylinder behind the hemisphere was calculated by methods
presented in reference 9, with the values of specific heats for beryllium
and copper as presented in references 10 and 11 being used. (See fig. 8.)
Rate of change of the temperature of the rodel wall may be expressed as
follows:

_ (Taw - Tw)k

aT,,
PyCy by

ar

In the calculations, the values of mess density used were
115 lb/cu ft for beryllium and 559 lb/cu ft for copper. The following
assumpticns were made in the calculation cf wall heating: constant
temperature through the wall, no transport of heat due to conduction
parallel with the wall, and no loss of heat due to radiation.

Heating on the 3/8-inch—diameter model was also calculated for the
total hemisphere from the relation

hg = 0.Shgya

where hg is the heat-transfer coefficient on the total frontal area
of the hemisphere and hgtag 1s the heat-transfer coefficient at the
stagnation point.

Experimental and Calculated Heating on Beryllium Models

Figure 9 presents the experimental and calculated heating data for
the l-inch-diameter hemispherical beryllinm model at stagnation temper-
atures of 2,000° F, 2,900° F, and 3,600° . Heating at the stagnation
pcint and the LO® point of the hemisphere is slightly above that pre-
dicted by theory in the earlier part of the tests, whereas it is, in
general, less than that predicted in the later part of the tests. Heating



in the earlier part of the tests more closely approximates theoretical
assumption of aerodynamic heating since radiation and conduction effects
are the least at this time. Both radiation and conduction would tend to
lower the stagnation-point temperature at the later part of the test.
Heating of the cylinder behind the hemisphere agrees with theoretical
predicticns in the 2,OOOO F test (fig. 9), but is less than that pre-
dicted as stagnation temperature is increased, probably because of the
increased absorption of heat from the boundary layer by the hemisphere
ahead of the cylinder as stagnation temperature is increased.

Figure 10 presents the heating data for the B/h—inch—diameter hemi-
spherical beryllium model. Heating on the hemisphere is higher than
that predicted by theory in the early part of the test. Heating on the
cylinder behind the hemisphere follows the same pattern as that of the
l-inch-diameter beryllium model.

Figure 1l presents the experimental heating data for the stagnation
point cf the 5/8—inch—diameter berylliium hemispherical model and compares
these data with those obtained from theory for heating on the stagnation
pcint and on the total henisphere. Inasmuch as the model is small with
relatively thick walls, the experimental values of heating do not approx-
irate those predicted by theory since conduction and radiation are not
taken into account.

Experimental and Calculated Heating on Copper Models and
Comparison With Beryllium Models

Figure 12 presents the experimental and calculated heating data for
the l-inch-diameter copper hemispherical model for heating on the stagna-
tion point, the 40° point, and the cylinder behind the hemisphere.
Initial heating on the stagnation point and the 40° point is considerably
greater than that predicted by theory for laminar flow on the surface.
Because of the high heat conduction of copper, the cylinder behind the
hemisphere heated more rapidly than predicted by theory after the initial
part of the test. As stagnation temperature is increased, the increase
of heating rate on the cylinder is less than predicted by theory and the
trends are similar to those for the beryllium models in the initial part
of the tests.

Figure 13 presents the heating data for the B/h—inch—diameter copper
hemispherical models. The trends observed here are similar to those of
the l-inch-diameter ccpper nodels.

Figure 1h presents the experimental and calculated heating data for
the 5/8—inch—diameter copper heriispherical models. Because of the rela-
tively thick wall, as compared with the diameter of model, and the high



thermal ccnductivity of copper, simple thecry does not predict the
heating when conduction and radiation are not taken into account. A
comparison of the heating of the 3/8-inch-diameter copper model (fig. 1k4)
and the 5/8—inch-diameter beryllium model (fig. 11) indicates that the
copper models are heated at a higher rate than predicted by theory.

Oxidation may be an important factor cn the heating rate even if the
depth of cxidation is less than 1 mil. The oxidation of beryllium to
berylliunm oxide produces 27,150 Btu/lb of teryllium, whereas the oxida-
tion of copper to cupric oxide produces 9,880 Btu/lb of copper or
5,760 Btu/lb of copper if the cuprous oxide is formed. The temperature
rise per mil of surface depth oxidized is

t
AT = 2E

Tty
where
q heat formation of oxide per pound cf metal oxidized, Btu/lb
tm thickness of metal oxidized, ft
Tty thickness of wall of flat plate, ft
oy heat capacity of metal wall, Btu/lt/OF

Therefore, for a flat plate 0.125 inch thick, the oxidation of a layer
0.001 inch thick will increase the wall terperature 434° F for beryllium
and 880° F for copper if the cupric oxide is formed or 513° F if the
cuprous oxide is formed and all of the heat of oxidation is absorbed
into the parent metal.

Since copper turns color immediately itpon entering the hot airstream
because of the oxidation on the surface, tre model will be heated from
the oxidation process as well as from the zerodynamic heating process.
Because the models were polished to the bare metal surface before they
were tested, the high heating rates on the copper models, at the initial
part of the test, may possibly be due to oxidation of the polished surface.
Some of the heat rise on the beryllium models may be due to oxidation,
although the effect is noct so large as for copper.

Correcticons for radiation were not mace on the theoretical heating
of the models because no values of emissivity were available over the
temperature range the models were heated.



CONCLUSIONS

The results obtained from tests of copper and beryllium hemispher-
ical models in a Mach number 4 hot-air Jet at stagnation temperatures of
2,OOOO F to 3,600° F indicated the following:

1. Upon being heated, beryllium forms a thin, smooth protective
oxide which does not thicken appreciably with increasing temperature and
exhibits no tendency to ignite below its melting point. Soft beryllium
blows away near its melting point. Copper, as compared with beryllium,
forms a somewhat heavier oxide layer before reaching its melting point
and exhibits a tendency to burn rapidly.

2. Qualitative heat-transfer measurements on copper and beryllium
models tested under identical conditions show a trend of higher heating
rates for the copper than for the beryllium. Heating on the hemispherical
nose of the beryllium models is slightly above that predicted by theory
whereas heating on the nose of the copper models is considerably higher
than that predicted by theory. Heating on the cylinder behind the hemi-
sphere shows a trend of becoming less than that predicted by theory as
stagnation temperature is increased.

5. Calculation of the heating produced by oxidation of the surface,
even for moderate depths, shows that oxidation may possibly be a signif-
icant factor in raising the temperature of a thin wall.

lLangley Research Center,
National Aeronautics and Space Administration,

Langley Field, Va., May 15, 1959.
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L-58-1492
Figure 1.- Photograph of the pilot model ceramic-heated air Jet at the
langley Research Center.
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Figure 3.- Photograph of a model in test

section.
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